APOSTOL TYPE (p, q)-FROBENIUS-EULER POLYNOMIALS AND NUMBERS
نویسندگان
چکیده
In the present paper, we introduce (p, q)-extension of Apostol type Frobenius-Euler polynomials and numbers and investigate some basic identities and properties for these polynomials and numbers, including addition theorems, difference equations, derivative properties, recurrence relations and so on. Then, we provide integral representations, explicit formulas and relations for these polynomials and numbers. Moreover, we discover (p, q)-extensions of Carlitz’s result [L. Carlitz, Mat. Mag., 32 (1959), 247-260] and Srivastava and Pintér addition theorems in [H. M. Srivastava, A. Pinter, Appl. Math. Lett., 17 (2004), 375-380].
منابع مشابه
Generating Functions for q-Apostol Type Frobenius-Euler Numbers and Polynomials
The aim of this paper is to construct generating functions, related to nonnegative real parameters, for q-Eulerian type polynomials and numbers (or q-Apostol type Frobenius–Euler polynomials and numbers). We derive some identities for these polynomials and numbers based on the generating functions and functional equations. We also give multiplication formula for the generalized Apostol type Fro...
متن کاملOn the q-Extension of Apostol-Euler Numbers and Polynomials
Recently, Choi et al. 2008 have studied the q-extensions of the Apostol-Bernoulli and the ApostolEuler polynomials of order n and multiple Hurwitz zeta function. In this paper, we define Apostol’s type q-Euler numbers En,q,ξ and q-Euler polynomials En,q,ξ x . We obtain the generating functions of En,q,ξ and En,q,ξ x , respectively. We also have the distribution relation for Apostol’s type q-Eul...
متن کاملanalog of Apostol type polynomials of order
Motivated by Kurts work [Filomat 30 (4) 921-927, 2016], we rst consider a class of a new generating function for (p; q)-analog of Apostol type polynomials of order including Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials of order . By making use of their generating function, we derive some useful identities. We also introduce (p; q)-analog of Stirling numbers of second kind...
متن کاملAN IDENTITY OF THE SYMMETRY FOR THE FROBENIUS-EULER POLYNOMIALS ASSOCIATED WITH THE FERMIONIC p-ADIC INVARIANT q-INTEGRALS ON Zp
Abstract. The main purpose of this paper is to prove an identity of symmetry for the Frobenius-Euler polynomials. It turns out that the recurrence relation and multiplication theorem for the Frobenius-Euler polynomials which discussed in [ K. Shiratani, S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Memo. Fac. Sci. Kyushu University Ser.A, 39(1985), 1...
متن کاملTwisted Dedekind Type Sums Associated with Barnes’ Type Multiple Frobenius-Euler l-Functions
The aim of this paper is to construct new Dedekind type sums. We construct generating functions of Barnes’ type multiple FrobeniusEuler numbers and polynomials. By applying Mellin transformation to these functions, we define Barnes’ type multiple l-functions, which interpolate Frobenius-Euler numbers at negative integers. By using generalizations of the Frobenius-Euler functions, we define gene...
متن کامل